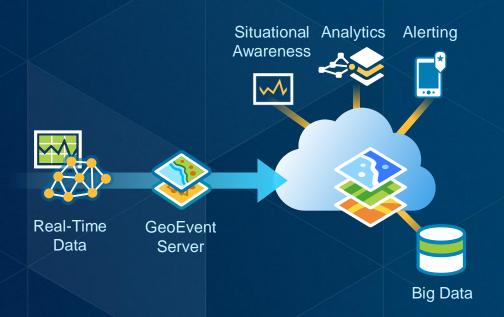
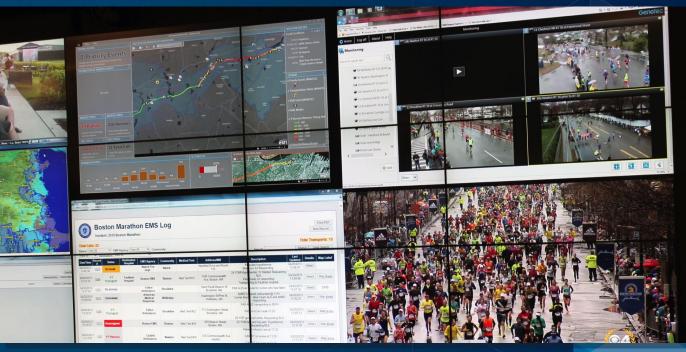
FOURTH INDUSTRIAL REVOLUTION: FROM ARTIFICIAL INTELLIGENCE TO ACTIONABLE INTELLIGENCE

Geo-enable the 4th Industrial Revolution

Interconnected Information, Processes, and Workflows All Happening at the Same Time **Real-Time Monitoring Advanced Modeling** Geospatial Al **Smart Devices** Internet of Things Machine Learning **Predictive Analytics** Geospatial Solutions Autonomous Vehicles Big Data **Cloud Computing** SaaS Creating Smart, **Data-Driven Analytics** Location Intelligence **Dynamic Organizations** Efficiency and Collaboration Open Data Access Distributed Architecture and Transparency Using the Power of Location to Integrate Everything

Industry 4.0: Key Challenges for Government


Industry 4.0 Enabler: Real-Time, IoT, AI/Machine Learning



Real-Time Analytics Integrating Sensor Networks and the IoT

- High-Velocity Data Streams
- Monitoring and Alerting
- Dynamic and Big Data Analytics

Dashboard

Supporting Real-Time GIS Applications Enabling Smarter Organizations

Internet of Things (IoT)

enabling geospatial insights with your IoT

Environment

co2

Public Health

hospitals

ambulances

warnings earthquakes precipitation

gases temperature humidity
atmospheric pressure radiation

pesticides electromagnetic feedback
rain gauges water level gauges
water quality air quality

noise

Airports

flight status queues plane location runway status

Connected Cars

autonomous driving traffic conditions holes parking meters road conditions slippery areas

network improvements

Transit

buses taxis rail trains crowds

People

health monitoring social activity

Public Safety police fire

nitrates

surveillance

Buildings

lighting hvac occupancy counts

Enterprise GIS

with real-time & big data capabilities

ingest, store, analyze, visualize

Energy Usage

electricity gas smart meters

City Workers

sanitation snow plows

Telecommunications

cell phone signals | dropped calls

Predictive Analysis – Accident Probability

Training machines to derive predictions from big data

Temperature Sun, Mon, Fri..

Wind Speed Fast, Slow..

Visibility
High/Low

Snow Depth
High/Low

Day of the Week
Sun, Mon, Fri..

Time of the Day 12:45, 23:00

Month
Feb, Dec..

Road Width 20-30 M

Road Alignment
Straight / Curved

Proximity to *Intersections*

Speed Limit

120 km/h

Sun Direction

East, West

Daily Traffic

AADT

Proximity to Billboards

10s of Variables

7 Years of Data400,000 Accidents500,000 Segments

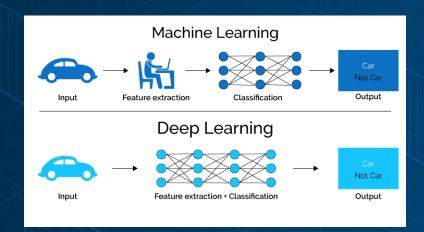
Impossible to Manually Analyze

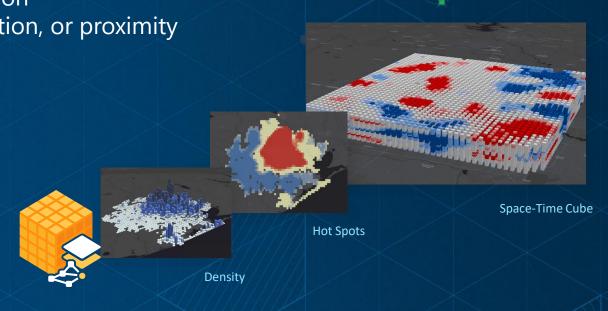
Train a
Machine to
do?

...

What is Machine Learning?

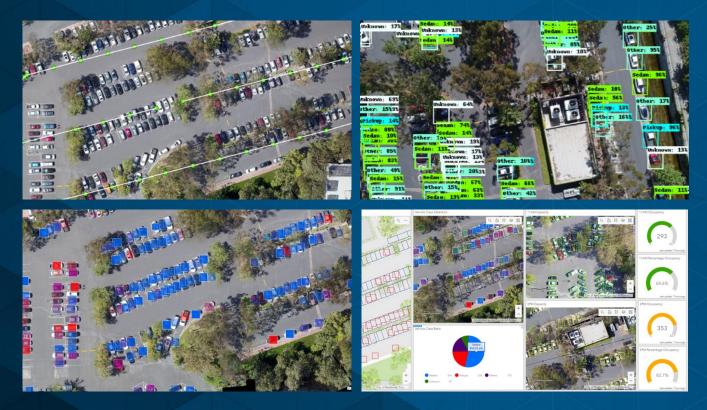
Data-driven algorithms and techniques that automate **prediction**, **classification** and **clustering** of data


Traditional Machine Learning


- Useful to solve a wide range of spatial problems
- Geography often acts as the 'key' for disparate data

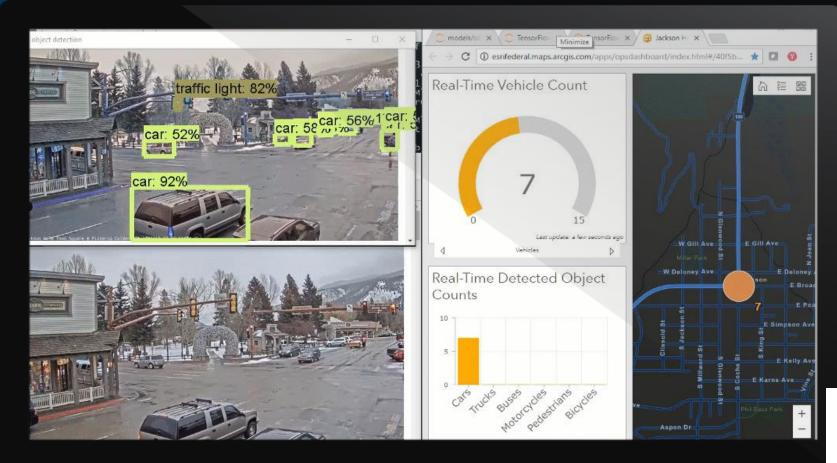
Spatial Machine Learning

Incorporate geography in their computation


Shape, density, contiguity, spatial distribution, or proximity

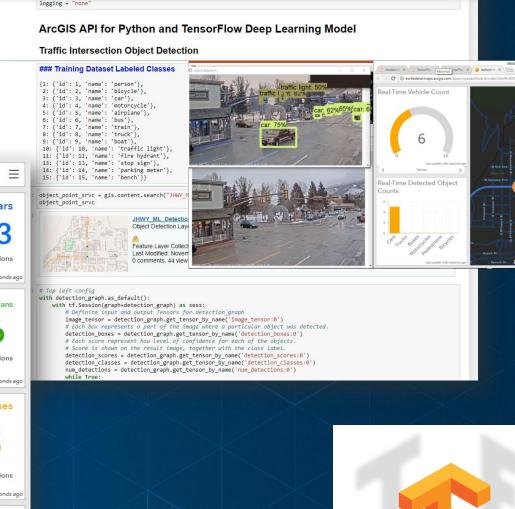
Integrating Deep Learning with GIS

Object Detection Using Drone Imagery

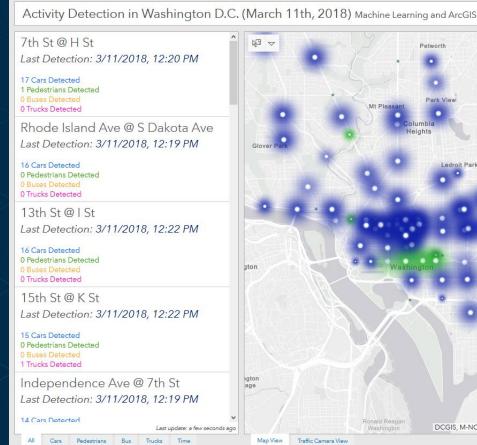


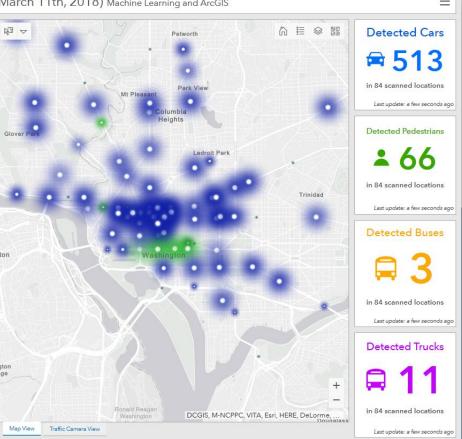
Geoprocessing		* 1 ×
Export Training Data For Deep Learning		≡
Parameters Environments Input Raster		?
USA NAIP Imagery: False Cold	or .	
1 Output Folder		
Chips		1
Input Feature Class Or Classifie	ed Raster	
Pool bounding boxes		• 🗃
Image Format		
JPEG format		
Tile Size X		224
Tile Size Y		224
Stride X		112
Stride Y		112
Output No Feature Tiles		
Meta Data Format		
PASCAL Visual Object Classes	k	•
Start Index		0
		Run 🕞

Working with External AI Engines - TensorFlow


Real-Time Object Recognition from Video

Working at Scale - TensorFlow


Multiple Cameras – Analysis at machine speed



TensorFlow

JUPYTER TENSORFIOW ObjectDetection Demo05 ScreenCap and Update-Copy1 Last Checkpoint: 4 hours ago (unsaved changes)

▼ 🖾 Litt Dashboard View: </> 👪 🕶 🚳

Augmented Reality

"See" your asset where you cannot see

Underground assets: pipes, valves, holes ...

Inspect your asset better

Increase Safety, Easy Maintenance

Conclusions

Successful Large Enterprise Implementation

Requires More Than Technology

- Vision and Leadership
- Executive Support
- Developing Sustainable Value
- Change Management
- Planning and Implementation

The application of GIS is limited only by the imagination of those who use it.

Jack Dangermond

