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Geo-enable the 4t Industrial
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Industry 4.0: Key Challenges for Government
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Industry 4.0 Enabler:
Real-Time, loT, Al/Machine Learning
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Real-Time Ana IYtICS Integrating Sensor Networks and the loT

- High-Velocity Data Streams
- Monitoring and Alerting
- Dynamic and Big Data Analytics
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Supporting Real-Time GIS Applications . . .
.. . Enabling Smarter Organizations



Internet of Things (loT)

enabling geospatial insights with your IoT Environment
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Predictive Analysis — Accident Probability

Training machines to derive predictions from big data
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What is Machine Learning?

Data-driven algorithms and techniques that automate
prediction, classification and clustering of data

Useful to solve a wide range of spatial problems
Geography often acts as the 'key’ for disparate data

Incorporate geography in their computation
Shape, density, contiguity, spatial distribution, or proximity

Machine Learning

Feature extraction Classification
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Integrating Deep Learning with GIS
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Object Detection Using Drone Imagery
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Working with External Al Engines - TensorFlow

Real-Time Object Recognition from Video
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Working at Scale - TensorFlow

Multiple Cameras — Analysis at machine speed

ACtiVity Detection in Washington D.E. (I\/Iarch 1 1th, 201 8) Machine Learning and ArcGIS
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5 = Jupyter TensorFlow_ObjectDetection_Demo05_ScreenCap_and_Update-Copy1 Last Checkpoint: 4 hours ago (unsaved changes) A | Logout
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Detected Cars
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ArcGIS API for Python and TensorFlow Deep Learning Model

Traffic Intersection Object Detection
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### Training Dataset Labeled Classes

‘person'},
‘bicycle’},
‘car'},
‘motorcycle'},

‘name’: *

‘name': ‘fire hydrant'},
‘name’: ‘stop sign'},
‘name’: ‘parking meter'},
‘name’: ‘bench’}}

lobject_point_srvc = gis.content.search("JHY_}
object_point_srvc

JHWY_ ML _Detectio
Object Detection Lay
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Feature Layer Collec
Last Modified: Novel
0 comments, 44 view!
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Detected Pedestrians
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Detected Trucks
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in 84 scanned locations

lwith detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_tensor = detection_graph.get_tensor_by_name
# Each box re ts a of re
detection_boxes = detection_graph.get_tensor_by_name('

detection_scores = detection_graph.get_tensor_by_name('detection_scores:8')
detection_classes = detection_graph.get_tensor_by_name(’ n_classes:@')
num_detections = detection_graph.get_tensor_by_name(’num :0")
while True:

Tensor




Augmented Reality




“See” your asset where you cannot see
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Underground assets: pipes, valves, holes ...






Inspect your asset better

Increase Safety, Easy Maintenance
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Conclusions




Successful Large Enterprise Implementation
Requires More Than Technology

- Vision and Leadership

- Executive Support

- Developing Sustainable Value
- Change Management

- Planning and Implementation
- Technical Enablement
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The application of GIS is limited only by the
imagination of those who use it.
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